jueves, 10 de octubre de 2013

SISTEMA DE REFRIGERACION DE UN MOTOR

SISTEMA DE REFRIGERACION


 
Es de gran importancia, ya que el funcionamiento correcto y la efectividad de su servicio dependen en gran parte del enfriamiento. Durante el funcionamiento del motor se produce calor debido al frotamiento de las piezas en movimiento y a la combustión de los gases en el cilindro puede alcanzar hasta los 2000ºC.
Si se permitiera estas altas temperaturas que permanezcan constantes en el motor durante su funcionamiento, las propiedades lubricantes del aceite en el sistema de lubricación quedarían destruidas por completo, y el motor sufriría daños considerables por efecto del intenso calor producido. El metal antifricción de los casquetes se fundiría, los pistones se pegarían a los cilindros, los cilindros se escoriarían y el motor completo quedaría inservible. Por lo tanto se puede deducir que el exceso de calor puede causar deterioro completo o parcial de un motor.
El sistema de refrigeración sirve para la importante tarea de evitar en el motor temperaturas excesivamente elevadas y para conservar una temperatura lo suficientemente alta para el funcionamiento eficaz del motor.
La refrigeración tiene por objeto mantener una temperatura de funcionamiento alrededor de 120ºC en la culata, con el fin de evitar una dilatación exagerada, asegurar las propiedades lubricantes del aceite y asegurar una buena carburación.
Los sistemas empleados para la refrigeración para los motores son:
  • Refrigeración por aire.
  • Refrigeración por líquido.

Refrigeración por aire
La gran ventaja de la refrigeración por aire es su sencillez; por esta razón se usa mucho en motocicletas, bombas estacionarias y maquinarias para carreteras. La refrigeración por aire se puede aplicar a motores de pequeña capacidad. El hecho que los motores enfriados por aire no requieren radiador, cámaras de agua, bomba de agua, y todos los componentes asociados por la refrigeración por agua, supone que los costos de fabricación son menores.
La Volkswagen utilizo en algunos modelos este sistema, tras entrar en producción masiva después de la II guerra mundial, llego a ser el automóvil mas barato de mas éxito en el volumen de producción.
Los motores refrigerados por aire no solamente son sencillos, sino también ligeros.
El amplio uso de aleaciones en lugar de acero en su construcción y la ausencia de muchas piezas del sistema de refrigeración por agua, permiten que el diseñador ahorre gran cantidad de peso.
Los motores con este sistema se hacen normalmente con los cilindros opuestos, horizontalmente o en V muy abiertos.
Aunque este sistema se utiliza, por lo general en motores pequeños y baratos no significa que el sistema sea ineficaz.
Las ventajas son una mayor sencillez, mayor rendimiento térmico, menor peso del motor, mayor estabilidad y menor consumo, en la práctica este tipo de refrigeración da un resultado excelente.
Los principales inconvenientes de los motores refrigerados por aire son el ruido y los problemas que atrae su aplicación en motores grandes. El ruido es causado por dos factores como son la ausencia de la cámara de agua y el ventilador. Como hay menos material en torno al bloque del motor, los ruidos de la combustión resultan sofocados. El funcionamiento del ventilador que lanza aire sobre el motor crea también una cantidad considerable de ruido.
Los componentes de la mayor parte de los sistemas son muy sencillos. El ventilador se sitúa frente a un conductor semi circular que cubre también la culata de cilindros y cuyo interior contiene tabiques que dirigen la corriente de aire sobre las aletas de enfriamiento del motor y a través del enfriador del aceite. Por debajo de los cilindros, el aire se dirige al termostato que hace funcionar una válvula por medio de una palanca. La válvula controla el flujo de aire que llega al ventilador y con esto se mantiene la temperatura del motor adecuada.
Después de pasar sobre el motor y el termostato, el aire se dirige hacia la parte trasera del automóvil o pasa a través de un sistema de cambio calorífico que suministra agua caliente para la calefacción del vehiculo. La culata y los cilindros de los motores enfriados por aire son piezas fundidas como aletas. Las aletas distribuyen el calor del motor sobre un área amplia. Si se hace el cilindro sin aletas, su longitud es de 15cms todo su calor se extiende sobre esta longitud.
Si se hace el cilindro con 10 aletas, cada una de 5 cms de profundidad, la misma cantidad de calor se dispersara sobre 100cms. De esta forma disminuirá la temperatura del cilindro y se permitirá que el aire tenga mayor acceso a las superficies que más enfriamiento requieren.
El ventilador movido por el motor dirige una corriente aire – frío sobre las aletas. El ventilador es necesario porque los motores enfriados por aire requieren un flujo de aire muy grande.
La forma y el tamaño de las aletas y el ventilador son cuestiones fundamentales para la eficacia del motor y también lo es la separación de las aletas. La separación amplia proporciona un flujo de aire fácil y por consiguiente poco soplo del ventilador que puede ser un poco pequeña. Si las aletas están muy juntas dispersaran mas calor, pero exigirán un ventilador mas poderoso para mantener el proceso de enfriamiento que, a su vez absorberá mas energía del motor.

Refrigeración por líquido

Este sistema depende de los métodos de trasferencia de calor los cuales son:
  • Conducción
  • Convención
  • Radiación
El procedimiento generalmente empleado es el de refrigeración por líquido. Existen 3 sistemas que permiten la circulación de agua:
  • Termosifón
  • Por bomba
  • Por termosifón acelerado por bomba
Termosifón
En este sistema la circulación del líquido refrigerante no se obtiene por medio de una bomba o por cualquier medio mecánico, sino se hace uso de la propiedad que tiene el líquido refrigerante caliente, es más liviano que el frío por la diferencia de densidades y por lo tanto sube a la parte mas alta del recipiente que lo contiene.
En el sistema termosifón el líquido circula con aumento de la temperatura del motor. En este sistema la velocidad de evacuación del líquido es muy débil.
Por bomba
La bomba es colocada entre el radiador y el motor en un punto bajo del circuito. La velocidad de evacuación esta limitada a 1mt/seg. En caso de daño de la bomba la refrigeración no esta asegurada.

Termosifón acelerado por bomba
En este sistema se adiciona una bomba para acelerar la circulación del líquido refrigerante. La bomba puede estar fijada sobre la culata o sobre el cárter de cilindros, está generalmente situada a la salida del líquido frío y dirigido hacia el cárter de cilindros.

Componentes del sistema de refrigeración por líquido.

  • Bomba de agua: el líquido se bombea a través del motor y el radiador.
  • Camisas de agua: contiene el líquido refrigerante alrededor de los cilindros del motor y las cámaras de combustión.
  • Depósito de recuperación del líquido refrigerante: almacena el líquido refrigerante que sale del radiador a medida que este se expande debido al incremento de temperatura.
  • Ventilador: provoca un flujo de aire através del radiador.
  • Termostato: mantiene la temperatura adecuada al motor, controlando la circulación del líquido refrigerante.
  • Desviador: Permite que la bomba de agua recircule el liquido refrigerante y el flujo de aire a través del núcleo del calefactor.
  • Mangueras: unen los componentes del sistema de enfriamiento, proporcionando la circulación del líquido refrigerante.
  • Calefactor: proporciona calor eléctrico al líquido refrigerante del motor para calentar el motor y ayudar el arranque en frío.
  • Transmisión del enfriador del aceite: transfiere calor del fluido de la trasmisión automática al líquido refrigerante en el radiador.
  • Radiador: Su función es intercambiar calor.
PROBLEMAS EN EL SISTEMA:
 
Daños en el sistema de enfriamiento.
Las averías que determinan un funcionamiento anormal del circuito de refrigeración son:
  • Perdidas del líquido refrigerante en el circuito
  • Calentamiento excesivo del motor.
  • El motor tarde mucho tiempo en alcanzar la temperatura de operación.
Las causas de un calentamiento anormal o excesivo pueden ser:
  • Poco liquido refrigerante
  • Radiador sucio por el exterior.
  • Termostato funciona mal.
  • Radiador y camisas obstruidas.
  • Bomba de agua dañada; se nota mirando la tapa del radiador y observando si el agua circula con el motor encendido.

jueves, 3 de octubre de 2013

VARIABLES

Clasificación de las Variables

Derivada del término en latín variabilis, variable es una palabra que representa a aquello que varía o que está sujeto a algún tipo de cambio. Se trata de algo que se caracteriza por ser inestable, inconstante y mudable. En otras palabras, una variable es un símbolo que permite identificar a un elemento no especificado dentro de un determinado grupo. Este conjunto suele ser definido como el conjunto universal de la variable (universo de la variable, en otras ocasiones), y cada pieza incluida en él constituye un valor de la variable.
  • Variables Teóricas: Son aquellas que son abstractas que no se entienden porque no son observables o medibles sino se definen. Ejemplos: estatus socio económico, rendimiento académico, imperialismo, dependencia, dominación, infraestructura, etc.

  • Variables Intermedias: Son aquellas que permiten comprender a las variables teóricas. Ejemplo El rendimiento académico no se entiende sino está referida a los calificativos, a la asistencia, a la dedicación al estudio, puntualidad del estudiante.

  • Variables empíricas: Indicadores, son aquellas que permiten entender mejor a las variables intermedias y por tanto a las variables teóricas. No necesitan definirse por cuanto son fácilmente entendibles, medibles u observables. Ejemplos: la variable calificativa puede ser muy buena, buena, regular, mala y pésima. Las variables empíricas pueden expresarse cuantitativamente.

  • Variable Dependiente: Es aquella que dentro de una hipótesis representa la consecuencia, el efecto, el fenómeno que se estudia. Se simboliza con la letra Y. Ejemplo: entre las variables rendimiento académico y aplicación de métodos, la variable dependiente es rendimiento académico. En una función matemática como la típica: Y= (f) X (Se lee Y está en función de X; ó Y depende de X)

  • Variable Independiente: Es aquella que influye en la variable dependiente y no de depende de otra variable, dentro de una hipótesis. Se simboliza con la letra X. Ejemplo: entre las variables hiperactividad y falta de autoestima, la variable autoestima es independiente, ya que explica o influye en la hiperactividad del niño.

  • Variable Extrañas: Externas son aquellas que provienen del exterior al campo de investigación y por ello se denominan también intervinientes. Son de varias clases pero lo que ahora nos interesa son las variables conexas, o variables sujetas y orgánicas, como son las cualidades del sujeto que se investiga por ejemplo: edad, sexo, inteligencia, conocimientos previos, procedencia, etc.

  • Variables Cualitativas: son aquellas que nominan o señalan cualidades. Ejemplo: La variable talla puede expresarse: muy alto, alto, mediano, bajo, muy bajo.

  • Variables Ordinales: son las que expresan una clasificación jerarquizada, en orden de importancia. Ejemplo: la variable nivel de instrucción comprende: iletrado, primaria, secundaria, superior.

  • Variables Cuantitativas: pueden ser discretas y continuas:

  • Variables Discretas: son las que expresan números enteros, por tanto pueden ser contados.

  • Variables Continuas: son las que expresan en números decimales, por tanto pueden ser medidos con mayor exactitud.

SISTEMA DE FRENOS ABS


SISTEMA ANTIBLOQUEO DE RUEDAS (ABS)

El sistema antibloqueo de ruedas o frenos antibloqueo, del alemán Antiblockiersystem (ABS), es un dispositivo utilizado en aviones y en automóviles, que hace variar la fuerza de frenado para evitar que los neumáticos pierdan la adherencia con el suelo.

El sistema fue desarrollado inicialmente para los aviones, los cuales acostumbran a tener que frenar fuertemente una vez han tomado tierra. En 1978 Bosch hizo historia cuando introdujo el primer sistema electrónico de frenos antibloqueo. Esta tecnología se ha convertido en la base para todos los sistemas electrónicos que utilizan de alguna forma el ABS, como por ejemplo los controles de tracción y de estabilidad.

A día de hoy alrededor del 75% de todos los vehículos que se fabrican en el mundo, cuentan con el ABS. Con el tiempo el ABS se ha ido generalizando, de forma que en la actualidad la gran mayoría de los automóviles y camiones de fabricación reciente disponen de él. Algunas motos de alta cilindrada también llevan este sistema de frenado. El ABS se convirtió en un equipo de serie obligatorio en todos los turismos fabricados en la Unión Europea a partir del 1 de julio de 2004, gracias a un acuerdo voluntario de los fabricantes de automóviles. Hoy día se desarrollan sistemas de freno eléctrico que simplifican el número de componentes, y aumentan su eficacia.

Historia

En el año 1936 se patentó la idea por parte de la compañía alemana Bosch. Se trataba de hacer (no sólo para coches, sino también para camiones, trenes y aviones) que fuera más difícil bloquear una rueda en una frenada brusca, con lo que se podía conseguir una mayor seguridad. Se hicieron pruebas, pero no se llegó a nada serio hasta que se desarrolló la electrónica digital a comienzos de los años '70. Hasta entonces, era materialmente imposible realizar tantos cálculos como necesitaba el sistema y de forma rápida.

Bosch inició el trabajo en serio para el desarrollo del ABS en el año 1964 de la mano de una subsidiaria, Teldix.Pero es en 1970 cuando la firma desarrolla un dispositivo eficaz y con la posibilidad de comercialización a gran escala. La primera generación del ABS tuvo 1.000 componentes, cifra que se redujo hasta 140 en la segunda generación. Después de 14 largos años de desarrollo, finalmente estuvo preparado el ABS de segunda generación, que se ofreció como una exuberante y revolucionaria opción en el Mercedes-Benz Clase S de la época junto con la Mercedes-Benz Clase E y en seguidas por el BMW Serie 7.

Funcionamiento


El ABS funciona en conjunto con el sistema de frenado tradicional. Consiste en una bomba que se incorpora a los circuitos del líquido de freno y en unos detectores que controlan las revoluciones de las ruedas. Si en una frenada brusca una o varias ruedas reducen repentinamente sus revoluciones, el ABS lo detecta e interpreta que las ruedas están a punto de quedar bloqueadas sin que el vehículo se haya detenido. Esto quiere decir que el vehículo comenzará a deslizarse sobre el suelo sin control, sin reaccionar a los movimientos del volante. Para que esto no ocurra, los sensores envían una señal al Módulo de Control del sistema ABS, el cual reduce la presión realizada sobre los frenos, sin que intervenga en ello el conductor. Cuando la situación se ha normalizado y las ruedas giran de nuevo correctamente, el sistema permite que la presión sobre los frenos vuelva a actuar con toda la intensidad. El ABS controla nuevamente el giro de las ruedas y actúa otra vez si éstas están a punto de bloquearse por la fuerza del freno. En el caso de que este sistema intervenga, el procedimiento se repite de forma muy rápida, unas 50 a 100 veces por segundo, lo que se traduce en que el conductor percibe una vibración en el pedal del freno.

El ABS permite que el conductor siga teniendo el control sobre la trayectoria del vehículo, con la consiguiente posibilidad de poder esquivar posibles obstáculos mediante el giro del volante de dirección.

 Uso


El sistema ABS permite mantener durante la frenada el coeficiente de rozamiento estático, ya que evita que se produzca deslizamiento sobre la calzada. Teniendo en cuenta que el coeficiente de rozamiento estático es mayor que el coeficiente de rozamiento dinámico, la distancia de frenado siempre se reduce con un sistema ABS.

Si bien el sistema ABS es útil en casi todas las situaciones, resulta indispensable en superficies deslizantes, como son pavimentos mojados o con hielo, ya que en estos casos la diferencia entre el coeficiente de rozamiento estático y el dinámico es especialmente alto.

Cuando se conduce sobre nieve o gravilla y se frena sin sistema ABS, se produce el hundimiento de las ruedas en el terreno, lo que produce una detención del coche más eficaz. El sistema ABS, al evitar que se produzca deslizamiento sobre el suelo también evita que se hundan las ruedas, por lo que en estos tipos de superficie, y deseando una distancia de frenado lo más corta posible sería deseable poder desactivar la acción del ABS.

Algunos sistemas usados en autos deportivos o de desempeño, permiten al sistema del vehículo desactivar el uso del ABS para producir una frenada más brusca al principio y permitir el control del mismo con una velocidad más baja. Es decir el sistema antibloqueo entra a trabajar con retraso, permitiendo derrapes controlados o enterramientos en terrenos blandos.

 


 

 

jueves, 26 de septiembre de 2013

HIPOTESIS

HIPOTESIS

Una hipótesis (del latín hypothĕsis y este del griego ὑπόθεσις) es una suposición. Es una idea que puede no ser verdadera, basada en información previa. Su valor reside en la capacidad para establecer más relaciones entre los hechos y explicar el por qué se producen. Normalmente se plantean primero las razones claras por las que uno cree que algo es posible. Y finalmente ponemos: en conclusión. Este método se usa en el método científico, para luego comprobar las hipótesis a través de los experimentos.

Una hipótesis científica es una proposición aceptable que ha sido formulada a través de la recolección de información y datos, aunque no esté confirmada, sirve para responder de forma alternativa a un problema con base científica.

Una hipótesis puede usarse como una propuesta provisional que no se pretende demostrar estrictamente, o puede ser una predicción que debe ser verificada por el método científico. En el primer caso, el nivel de veracidad que se otorga a una hipótesis dependerá de la medida en que los datos empíricos apoyan lo afirmado en la hipótesis. Esto es lo que se conoce como contrastación empírica de la hipótesis o bien proceso de validación de la hipótesis. Este proceso puede realizarse mediante confirmación (para las hipótesis universales) o mediante verificación (para las hipótesis existenciales).
 

Importancia de la hipótesis

Las hipótesis son el punto de enlace entre la teoría y la observación. Su importancia es que dan rumbo a la investigación al sugerir los pasos y procedimientos que deben darse en la búsqueda del conocimiento.
Cuando la hipótesis de investigación ha sido bien elaborada, y en ella se observa claramente la relación o vínculo entre dos o más variables, es factible que el investigador pueda:
Elaborar el objetivo, o conjunto de objetivos que desea alcanzar en el desarrollo de la investigación Seleccionar el tipo de diseño de investigación factible con el problema planteado. Seleccionar el método, los instrumentos y las técnicas de investigación acordes con el problema que se desea resolver, y Seleccionar los recursos, tanto humanos como materiales, que se emplearán para llevar a feliz término la investigación planteada.

Características de la hipótesis


  • Deben referirse a una situación real o realizable, no a una situación que no puede ocurrir bajo un cierto estado de hechos.
  • Las variables de la hipótesis tienen que ser comprensibles, estar bien definidas y ser lo más concretas posible.
  • La relación entre variables propuesta por una hipótesis debe ser clara y verosímil.
  • Los términos de la hipótesis y la relación planteada entre ellos, deben poder ser observados y medidos.
  • Las hipótesis deben estar relacionadas con técnicas disponibles para probarlas.

Asimismo, cada tipo de hipótesis tiene sus características extra.

  • Las hipótesis descriptivas del valor de variables que se van a observar en un contexto.
  • Las hipótesis correlacionales especifican las relaciones entre dos o más variables y el orden de éstas no es importante. Pueden alcanzar un nivel predictivo y parcialmente explicativo.